Pénzcentrum • 2024. szeptember 25. 11:02
Miközben a világ az ingyenesen elérhető mesterséges intelligencia-alapú eszközök lázában ég, a vállalati szektorban már kicsit visszafogottabb az AI-hájp: habár a cégek közel háromnegyede használja egy-egy üzleti területen a technológiát, a 2017 óta tapasztalt robbanásszerű növekedés csillapodni látszik, és viszonylag kevés példát találni a vállalatok alapvető működését forradalmasító integrált megoldásokra. A szakértők szerint a fejlesztések gyakran öncélúak és a cégek inkább csak az AI-trendeket szeretnék követni, de hiányoznak a célok és a valódi koncepció, komoly gondok vannak az adathitelesség terén, és a mesterséges intelligenciát napi szinten használó kollégák kompetenciái is hiányosak. A legtöbb esetben érdemes egyet hátra lépni, felmérni a valódi üzleti lehetőségeket, és elgondolkozni, milyen megoldásokkal tudjuk kezelni azokat a kihívásokat, melyek adott esetben csak évek múlva merülnek fel. Becslések szerint globálisan mintegy 266 millió cég alkalmaz valamilyen mesterséges intelligencia-alapú megoldást, főként egy-egy üzleti funkcióhoz kapcsolódva.
A technológia leginkább az ügyfélszolgálati és kiberbiztonsági területre szivárgott be, de egyre többen használnak digitális asszisztenseket is a különböző adminisztratív feladatok kiváltására. A legnépszerűbb eszköz továbbra is a generatív AI, mely kétségtelenül óriási segítséget nyújt a tartalomgyártásban, sales- és marketingtevékenységekben, adatfeldolgozásban vagy egyes IT-feladatokban, de az integrált, üzleti funkciók egészét forradalmasító megoldásokból kevesebbet látni a piacon – ami persze nem jelenti azt, hogy nem zajlanak pilot fejlesztések a háttérben.
De mégis hogyan érdemes belefogni egy ilyen horderejű projektbe, milyen szempontokat fontos átgondolni és hogyan kerüljük el a buktatókat?
Stratégiai szemléletre van szükség
A mesterséges intelligencia-alapú fejlesztések számos cégnél fókuszba kerültek az elmúlt években szinte minden szektorban, ugyanakkor a többség egyelőre tapogatózik, keresi az iparági példákat és a konkrét alkalmazási területeket (use case-ek). Sokan inkább csak a trendeket szeretnék követni, mert sejtik, hogy mekkora lehetőség rejlik az AI-megoldásokban, azonban jól megfogalmazott és átgondolt digitális stratégia hiányában nem tudnak biztos alapokra építeni. A fejlesztések így egy-egy szoftver bevezetésére korlátozódnak és nem képesek valódi megoldást nyújtani a változó piaci viszonyokra, valamint az aktuális üzleti igényekre. A kompetenciahiány szintén nehézségeket okoz: az AI-rendszerek tervezése és karbantartása széleskörű szakértelmet feltételez, de a belső felhasználók is gyakran küzdenek azzal, hogy valójában nem értik, hogyan és miben segítheti a munkájukat a mesterséges intelligencia.
Tisztított és validált adatokkal érdemes „etetni” az AI-t
Az AI-projektek másik nagy buktatója az adathitelesség, amely valóban komoly kockázatokat rejt: ha a bemeneti adatok hibásak, manipuláltak, vagy nem szolgálják megfelelően az adott üzleti célt, a gépi tanuláshoz kapcsolódó megoldások nem működhetnek hatékonyan – erre hívják fel a figyelmet a téma szakértői a Protechtor technológiai és üzleti tudásmegosztó sorozatának következő, október 3-tól elérhető adásában. Bár a big data továbbra is a techszektor érdeklődésének középpontjában áll, egy AI-projektnél azonban mégis érdemes első körben kiértékelni a vállalati tevékenységek során összeálló adathalmazt, szintezni őket, valamint tisztítani és validálni, majd azokkal kezdeni a mesterséges intelligencia „etetését”, melyek valódi üzleti hasznot hozhatnak.
Ez a folyamat adott esetben hónapokat vagy akár egy évet is igénybe vehet, ezt mindenképpen érdemes figyelembe venni az AI-projektek tervezése során.
Világos célokat kell megfogalmazni A Protechtor tudásmegosztó oldalt működtető Stylers Group szakértői szerint az AI-projektek sikere nagyban múlik azon, hogy a vállalatok és a menedzsmentek kellő nyitottsággal állnak-e a technológiai korszakváltáshoz, és pontosan meg tudják-e fogalmazni, milyen céllal valósítanak meg digitális fejlesztéseket rövid és hosszú távon. Ehhez támpontot nyújthat egy komplex problématérkép készítése, amely világosan megmutathatja, milyen kihívásoknak kell megfelelnie a cégnek a jelen piaci helyzetben, de azt is segíthet átgondolni, hogy akár öt év múlva hogyan változik majd a helyzet.
Bárkinek járhat ingyen 8-11 millió forint, ha nyugdíjba megy: egyszerű igényelni!
A magyarok körében évről-évre nagyobb népszerűségnek örvendenek a nyugdíjmegtakarítási lehetőségek, ezen belül is különösen a nyugdíjbiztosítás. Mivel évtizedekre előre tekintve az állami nyugdíj értékére, de még biztosítottságra sincsen garancia, úgy tűnik ez időskori megélhetésük biztosításának egy tudatos módja. De mennyi pénzhez is juthatunk egy nyugdíjbiztosítással 65 éves korunkban és hogyan védhetjük ki egy ilyen megtakarítással pénzünk elértéktelenedését? Minderre választ kaphatsz ebben a cikkben, illetve a Pénzcentrum nyugdíj megtakarítás kalkulátorában is. (x)
Amikor kirajzolódik ez a konkrét vízió és ennek mentén összeáll a digitalizációs mérföldkövek listája, a vállalat körülnézhet a rendelkezésre álló technológiai megoldások, létező dobozos termékek és szoftverek között, hogy megtalálja a számára legmegfelelőbbeket. Fontos figyelembe venni, hogy a fejlesztések akkor szolgálhatják tartósan a kitűzött üzleti célokat, ha a gépi erőket sikeresen és hatékonyan integráljuk a meglévő folyamatokba és rendszerekbe, emellett könnyen skálázható és rugalmas megoldásokat fejlesztünk.
A blokkláncnak is lehet szerepe
A vállalati adatvagyon felmérése, tisztítása és validálása már a technológiai megvalósítás irányába tett első lépésekkel párhuzamosan megkezdődhet, hiszen erre a folyamatra mindenképpen szükséges elegendő időt fordítani a projekt során. Amikor kinyertük a megfelelő információkat a rendelkezésre álló óriási adathalmazból, kulcsfontosságú biztosítani, hogy ezek hitelessége a későbbiekben is megkérdőjelezhetetlen legyen saját magunk és partnereink felé. A blokklánc technológia segítségével biztosíthatjuk, hogy sem véletlen hibából, sem szándékos manipulációból eredően nem módosulhatnak egyoldalúan az adataink, ezzel pedig számos kritikus üzleti kockázatot háríthatunk el. Az AI-projektek sikerének kétségtelen előfeltétele az oktatás és kompetenciafejlesztés, amely nélkül esélyünk sincs arra, hogy megfelelő technológiai hátteret alkossunk és a mesterséges intelligenciában rejlő lehetőségeket maradéktalanul kiaknázzuk.
„A kompetencia-kihívás kétirányú, egyrészt – ahogy a fentiekből is látszik –, a vállalati AI-rendszerek tervezése, előkészítése, a megfelelő AI-modell felépítése, bevezetése, karbantartása sokrétű szakértelmet és átfogó gondolkodást igényel. A hiányzó láncszemeket az érintett kollégák képzésével érdemes pótolni, ebbe beletartozik a szemléletformálás, valamint a saját use case-ek feltárása is. Másrészről sokszor találkozni azzal a problémával, hogy azok a munkavállalók, akik napi szinten használják az adott mesterségesintelligencia-alapú rendszereket a vállalaton belül, nincsenek tisztában azok működésével, előnyeivel. Ezt a problémát is tudatos, naprakész és sokoldalú edukációval lehet kezelni” – mondja Gönczy Gábor, a Stylers Group információ-technológiai cégcsoport ügyvezető-tulajdonosa.